Learning Causal Structure from Reasoning

نویسنده

  • Aron K. Barbey
چکیده

According to the transitive dynamics model, people can construct causal structures by linking together configurations of force. The predictions of the model were tested in two experiments in which participants generated new causal relationships by chaining together two (Experiment 1) or three (Experiment 2) causal relations. The predictions of the transitive dynamics model were compared against those of Goldvarg and Johnson-Laird’s model theory (Goldvarg & JohnsonLaird, 2001). The transitive dynamics model consistently predicted the overall causal relationship drawn by participants for both types of causal chains, and, when compared to the model theory, provided a better fit to the data. The results suggest that certain kinds of causal reasoning may depend on force dynamic—rather than on purely logical or statistical—representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Acquisition and Use of Causal Structure Knowledge

This chapter provides an introduction to how humans learn and reason about multiple causal relations connected together in a causal structure. The first half of the chapter focuses on how people learn causal structures. The main topics involve learning from observations vs. interventions, learn temporal vs. atemporal causal structures, and learning the parameters of a causal structure including...

متن کامل

The role of learning data in causal reasoning about observations and interventions.

Recent studies have shown that people have the capacity to derive interventional predictions for previously unseen actions from observational knowledge, a finding that challenges associative theories of causal learning and reasoning (e.g., Meder, Hagmayer, & Waldmann, 2008). Although some researchers have claimed that such inferences are based mainly on qualitative reasoning about the structure...

متن کامل

Structure Learning of Causal Bayesian Networks: A Survey

Causality is a fundamental concept in reasoning. The effectiveness of many reasoning tasks depends on the understanding of the underlying cause-effect relationships. Therefore, the notion of causality has been explored in a wide range of disciplines. Causal discovery, however, was not modeled as a machine learning task until recently. Many learning approaches have recently been developed and ap...

متن کامل

How Causal Reasoning Can Bias Empirical Evidence

Theories of causal reasoning and learning often implicitly assume that the structural implications of causal models and empirical evidence are consistent. However, for probabilistic causal relations this may not be the case. We propose a causal consistency hypothesis claiming that people tend to create consistency between the two types of knowledge. Mismatches between structural implications an...

متن کامل

A causal framework for integrating learning and reasoning

Can the phenomena of associative learning be replaced wholesale by a propositional reasoning system? Mitchell et al. make a strong case against an automatic, unconscious, and encapsulated associative system. However, their propositional account fails to distinguish inferences based on actions from those based on observation. Causal Bayes networks remedy this shortcoming, and also provide an ove...

متن کامل

Causal reasoning in rats.

Empirical research with nonhuman primates appears to support the view that causal reasoning is a key cognitive faculty that divides humans from animals. The claim is that animals approximate causal learning using associative processes. The present results cast doubt on that conclusion. Rats made causal inferences in a basic task that taps into core features of causal reasoning without requiring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007